Джокер
Администратор
- Регистрация
- 2 Янв 2015
- Сообщения
- 112.317
- Реакции
- 72.785
Складчина: Введение в нейронные сети (Keras, Tensorflow) [stepik] [Юлия Пономарева]
Для кого этот курс:
Для тех, кто хочет разбираться в устройстве нейронных сетей, кто хочет решать задачи компьютерного зрения (computer vision) или обработки естественного языка (natural language processing), кто хочет получить навык написания кода на Keras/Tensorflow
Начальные требования:
Основы Python
Numpy
Основы линейной алгебры (понятия векторов, матриц)
Понятие производной
Основы машинного обучения (работа с данными, линейная регрессия)
Почему стоит выбрать именно этот курс:
В этом курсе 8 лекций с практическими упражнениями, которые покрывают основы нейронных сетей.
Каждой тонкости уделяется особое внимание, информация разжевывается до мелочей и подается вам.
Цели курса:
Разобраться в устройстве нейронной сети
Усвоить процесс создания нейросети на Keras/Tensorflow
Научиться решать задачи классификации, детекции, сегментации
Освоить концепции сверточных и рекуррентных нейронных сетей
Познакомиться с популярными подходами для решений задач
Чему вы научитесь:
Обучать сверхточные нейросети для задач классификации, сегментации и детекции
Применять метод обратного распространения ошибки
Создавать свои нейронные сети на Keras/Tensorflow
Обучать рекуррентные нейросети для работы с текстом
Разбираться в metric learning, autoencoders, GAN
Программа курса:
Введение
Приветствие
Google Colab
Знакомство с устройством нейронных сетей
Основы обучения нейронных сетей
Keras
TensorFlow
Архитектуры нейросетей
CNN - сверточные сети
RNN - рекуррентные сети
Прикладные задачи
Сегментация
Детекция
Генерация изображений и классификация большого кол-ва классов
Цена 3500 руб.
СКАЧАТЬ СЛИВЫ КУРСОВ
Для кого этот курс:
Для тех, кто хочет разбираться в устройстве нейронных сетей, кто хочет решать задачи компьютерного зрения (computer vision) или обработки естественного языка (natural language processing), кто хочет получить навык написания кода на Keras/Tensorflow
Начальные требования:
Основы Python
Numpy
Основы линейной алгебры (понятия векторов, матриц)
Понятие производной
Основы машинного обучения (работа с данными, линейная регрессия)
Почему стоит выбрать именно этот курс:
В этом курсе 8 лекций с практическими упражнениями, которые покрывают основы нейронных сетей.
Каждой тонкости уделяется особое внимание, информация разжевывается до мелочей и подается вам.
Цели курса:
Разобраться в устройстве нейронной сети
Усвоить процесс создания нейросети на Keras/Tensorflow
Научиться решать задачи классификации, детекции, сегментации
Освоить концепции сверточных и рекуррентных нейронных сетей
Познакомиться с популярными подходами для решений задач
Чему вы научитесь:
Обучать сверхточные нейросети для задач классификации, сегментации и детекции
Применять метод обратного распространения ошибки
Создавать свои нейронные сети на Keras/Tensorflow
Обучать рекуррентные нейросети для работы с текстом
Разбираться в metric learning, autoencoders, GAN
Программа курса:
Введение
Приветствие
Google Colab
Знакомство с устройством нейронных сетей
Основы обучения нейронных сетей
Keras
TensorFlow
Архитектуры нейросетей
CNN - сверточные сети
RNN - рекуррентные сети
Прикладные задачи
Сегментация
Детекция
Генерация изображений и классификация большого кол-ва классов
Цена 3500 руб.
СКАЧАТЬ СЛИВЫ КУРСОВ
Для возможности скачивать складчины и сливы курсов нужно зарегистрироваться
Возможно, Вас ещё заинтересует:
- Клуб Зеленой Свиньи (25 июля- 22 августа 2025) [Тариф Клубная карточка] [Олег Макаренко, Кримсональтер]
- [ИИ] Чат-бот с искусственным интеллектом ChatGPT [Team №28 на 1 месяц по 30 человек] [openai.com]
- Код Меркурия [Юрий Курилов]
- Школа капитализма (август 2025) [Тариф Вольнослушатель] [Олег Макаренко]
- Мама, судьба и смерть [Елена Веселаго] [Повтор]
- [Машинное вязание] Кокон поперечный [Ольга Крикунова]
- Клуб 7:07 [Сергей Оларь]
- Zakharov Invest - закрытый канал по облигациям (сентябрь 2025 - февраль 2026) [Кирилл Захаров]
- Мама, судьба и смерть [Елена Веселаго]
- Деньги для терапевта [Елена Веселаго]