Gary Oldman
VIP складчик
- Регистрация
- 6 Сен 2014
- Сообщения
- 33.793
- Реакции
- 202.886
Автор: Кук Даррен
Название: Машинное обучение с использованием библиотеки Н2О
Машинное обучение наконец-то достигло стадии зрелости. При помощи программного обеспечения H2O вы можете решать задачи машинного обучения и анализа данных с использованием простого в использовании и открытого (open source) фреймворка, который поддерживает большое количество операционный систем и языков программирования, а также масштабируется для обработки больших данных. Это практическое руководство научит вас использовать алгоритмы машинного обучения, реализованные в H2O, с упором на наиболее важные для продуктивной работы аспекты.
Если вы умеете программировать на R или Python, хотя бы немного знаете статистику и имеете опыт обработки данных, эта книга Даррена Кука познакомит вас с основами использования H2O и поможет вам поэкспериментировать с машинным обучением на наборах данных разного размера. Вы изучите несколько современных алгоритмов машинного обучения: глубокое обучение, «случайный лес», обучение на неразмеченных данных и ансамбли моделей.
Прочтя эту книгу, вы:
• узнаете, как импортировать данные в H2O, преобразовывать их и экспортировать их из H2O;
• изучите основные концепции машинного обучения, такие как перекрестная проверка и проверочные наборы данных;
• поработаете с тремя разными наборами данных, решая задачи регрессии, бинарной и многоклассовой классификации;
• используете H2O для анализа каждого набора данных при помощи четырех алгоритмов машинного обучения;
• поймете, как работает кластерный анализ и другие алгоритмы обучения на неразмеченных данных.
Понимание процесса построения моделей, тупиковых ситуаций и заканчивающихся провалом экспериментов является не менее важным, чем изучение кода!
Подробнее:
Скачать:
Название: Машинное обучение с использованием библиотеки Н2О
Машинное обучение наконец-то достигло стадии зрелости. При помощи программного обеспечения H2O вы можете решать задачи машинного обучения и анализа данных с использованием простого в использовании и открытого (open source) фреймворка, который поддерживает большое количество операционный систем и языков программирования, а также масштабируется для обработки больших данных. Это практическое руководство научит вас использовать алгоритмы машинного обучения, реализованные в H2O, с упором на наиболее важные для продуктивной работы аспекты.
Если вы умеете программировать на R или Python, хотя бы немного знаете статистику и имеете опыт обработки данных, эта книга Даррена Кука познакомит вас с основами использования H2O и поможет вам поэкспериментировать с машинным обучением на наборах данных разного размера. Вы изучите несколько современных алгоритмов машинного обучения: глубокое обучение, «случайный лес», обучение на неразмеченных данных и ансамбли моделей.
Прочтя эту книгу, вы:
• узнаете, как импортировать данные в H2O, преобразовывать их и экспортировать их из H2O;
• изучите основные концепции машинного обучения, такие как перекрестная проверка и проверочные наборы данных;
• поработаете с тремя разными наборами данных, решая задачи регрессии, бинарной и многоклассовой классификации;
• используете H2O для анализа каждого набора данных при помощи четырех алгоритмов машинного обучения;
• поймете, как работает кластерный анализ и другие алгоритмы обучения на неразмеченных данных.
Понимание процесса построения моделей, тупиковых ситуаций и заканчивающихся провалом экспериментов является не менее важным, чем изучение кода!
Подробнее:
Для возможности скачивать складчины и сливы курсов нужно зарегистрироваться
Скачать:
Для возможности скачивать складчины и сливы курсов нужно зарегистрироваться
Возможно, Вас ещё заинтересует:
- [Stepik, Hayk Inants] Javascript. Часть 1 (2024)
- [balun.courses, Владимир Балун] Хеш-таблицы: задачи с алгосекций (2025)
- [udemy, Start-Tech Academy] Тестирование на проникновение моделей GenAI LLM: защита больших языковых моделей (2025)
- [Stepik, Максим Крупчатников] DevOps-инженер: От основ до продакшена (2025)
- [Vesperfin, Арина Веспер] VesperfinCode: Поддержка — Генерация Паттернов и Low-Drawdown Стратегии
- [Stepik, Александр Краснопевцев] English You Need to Get an IT Job (2025)
- [Buildin, Notion огонек] Горизонты 2025 в Buildin (2024)
- [Udemy, Vitalii Shumylo] Основы сетей и сетевого администрирования (2025)
- [Udemy] NIST Framework с элементами контроля кибербезопасности и безопасности IoT
- [Влад Тен] Алгоритмы с нуля (релиз 10 сентября)